

Two-micron Detector Development Using Sb-based Material Systems

M. Nurul Abedin

Passive Sensor Systems Branch NASA Langley Research Center MS 468, 5 N. Dryden Street Hampton, VA 23681

Tamer F. Refaat

Old Dominion University

Oleg V. Sulima

University of Delaware

Syed Ismail

NASA Langley Research Center

Upendra N. Singh

EarthAS:AetuangTeythelogyrConference 2006

June 26 - 29

Outline

- Overview
- Objective
- Sb-based detector applications
- Sb-based detector technology advantages
- **❖** Relevance to Earth Science and to Exploration Systems
- ❖ Detector Characterization at LaRC
- Conclusions

Overview

2-micron Detector Technology

- Sb-based detector
 - improves the measurement capability to achieve broad band sensitivity (wavelength range includes Si plus extended wavelength InGaAs detector)
 - enable new measurements with reduced complexity (e.g. electronics, optics, etc.), weight, size and cost of the system
- Detection of broadband with a single Sb-based detector
 - eliminates the requirements of Si plus extended wavelength InGaAs detectors in a system

Earth Science Technology Conference 2006

June 26 - 29

Objective

Develop, test, and implement new technology 2 μm detectors for applications to laser remote sensing from ground, aircraft, and space

Sb-based Detector Applications

- Detectors with responsivity at broad wavelengths are needed to span a wide wavelength range for the following applications
 - \bullet CO₂, O₃, H₂O, and CH₄
 - aerosols and clouds
 - detection of a large number of species in the visible-near infrared using active and passive remote sensing techniques, and
 - enable new science and lower-cost missions through lighter instruments

Sb-based Detector Technology Advantages

- Use a single element Photodiode (PD) that responds to CO₂ line and water vapor
- Spectral response in the 0.6 to 2.4 µm wavelength range with high gain and low noise
 - Existing photodiode doesn't provide same spectral coverage, and also not much gain and low noise
 - ❖ Simultaneous broad-spectral capability to fabricate detector that can respond in the 0.6 to 2.4 µm wavelength

range with high gain and low noise

Earth Science Technology Conference 2006

June 26 - 29

Relevance to Earth Science and to Exploration

This custom-designed detector will boost new measurements with

reduced laser power and enhance the measurement capabilities for

- profiling and water vapor profiling, aerosol and cloud profiling, and atmospheric pollutants monitoring that use wavelengths in the 0.6- to 2.4-μm range for earth atmospheric remote sensing
- Detecting column amounts of carbon dioxide (2.05 micron), water vapor (1.9-micron), and other trace gases in extreme environments of the senthage where the relevant to NASA's exploration systems

Detector Characterization at LaRC

- Acquired existing InGaAs, InGaAsSb, and HgCdTe 2-μm detectors
- ❖ Acquired custom-designed InGaAsSb quaternary detectors fabricated using Liquid Phase Epitaxy (LPE) and Molecular Beam Epitaxy (MBE) techniques.
- Carried out spectral responsivity calibration at different bias voltages and temperatures
- Calculated gain and detectivity variation with bias voltage and temperature at 2.05-μm incident radiation

Existing and Custom-Designed Detectors

Manufacturer	Existing Devices	Custom-Designed Devices
Hamamatsu Corp	InGaAs (2.3 μm cutoff) (I)	
Hamamatsu Corp	InGaAs (2.6 μm cutoff) (II)	
Judson Technologies	HgCdTe (2.7 µm cutoff) (III)	
Astro-Power, Inc	InGaAsSb (2.1 µm cutoff)	
AstroPower, Inc (LPE) University of Delaware (MBE)		InGaAsSb (2.1 μm cutoff) InGaAsSb (2.5 μm cutoff)
Rensselaer Polytechnic Institute		InGaSb/GaSb (2.25 μm cutoff)
Rensselaer Polytechnic Institute		InGaSb/InGaSb (2.08 μm cutoff)

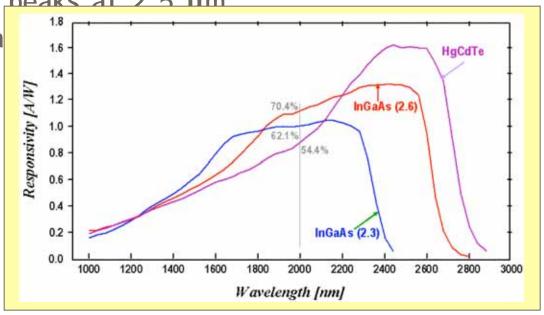
Detector Calibration

Setup

- 1- Monochromator
- 2- Detector Box
- 3- Detector Chamber with
 Water circulation and Nitrogen
 Purging
- 4- Current-to-voltage preamplifier
- 5- Temperature Controller
- 6- Oscilloscope
- 7- Spectrum Analyzer
- 8- Personal Computer
- 9- Room Temperature Monitor

Spectral Response Calibration

Existing 2 µm Detector Technology


❖ InGaAs extended range detectors peak at 2.1 and 2.4 µm,

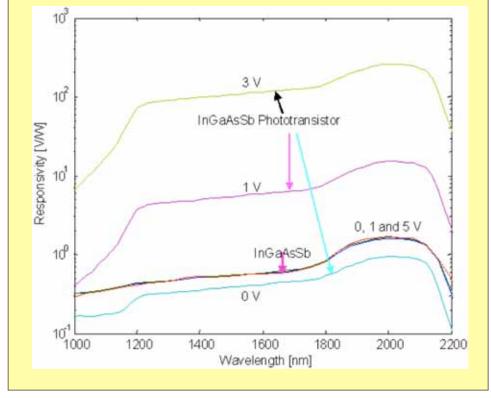
depending on the composition.

❖ HgCdTe detector peaks at 2.5 μm

* Both materials ha

- · PbS Reference Detector.
- · 40 nm Spectral Resolution.
- 20 °C Temperature.
- · O V Bias.

Earth Science Technology Conference 2006


June 26 - 29

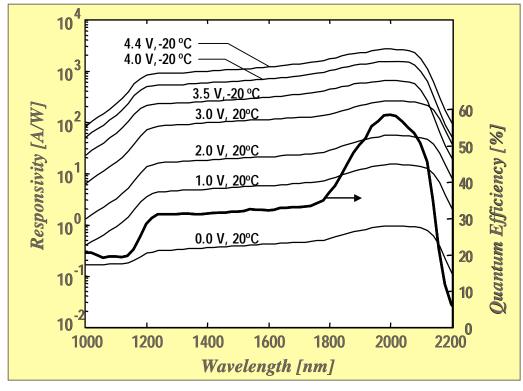
Spectral Response Calibration

Existing and Custom-designed LPE-grown InGaAsSb Photodiode and Phototransistor Technology

- · PbS Reference Detector.
- · 40 nm Spectral Resolution.
- · 20 °C Temperature.
- · 0 5 V Bias.

Earth Science Technology Conference 2006

June 26 - 29


Spectral Response Calibration

Custom-designed LPE-grown Detector Technology

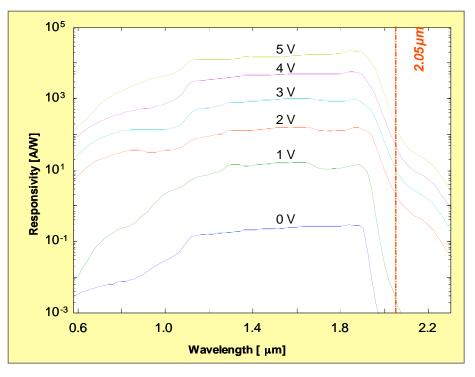
❖ InGaAsSb detector (A1-b1) peaks at 2 µm with broad

spectral period

- PbS Reference Detector.
- 20 nm Spectral Resolution.
- -20 to 20 °C Temperature.
- Different Bias Voltages.
- Calculated Quantum Efficiency for 0 V at 20 °C

Earth Science Technology Conference 2006

June 26 - 29

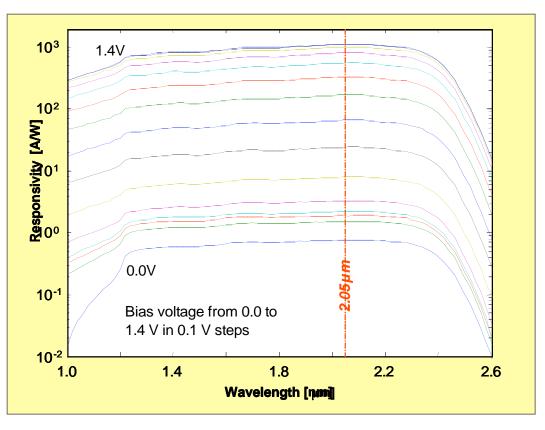


Spectral Response Calibration

Custom-designed LPE-grown Detector Technology

❖ InGaAsSb detector (A1-d2) with broad spectral period
(0.6- to 2.4-µm)

- Spectral response at 80K
- Increasing the bias voltage regain the 2 μm sensitivity.
- Observed very high responsivity (10000A/W).

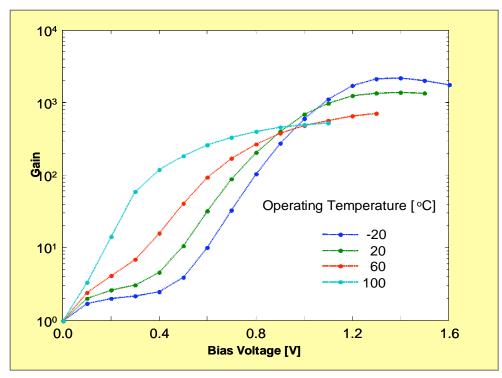


Spectral Response Calibration

Custom-designed MBE-grown Detector Technology

InGaAsSb detector (M1-A2) with broad spectral period

- PbS Reference Detector for 1000 nm to 2600 nm.
- 20 nm Spectral Resolution.
- 20 °C Temperature.
- OV 1.4 V Bias Voltage.
- MBE-grown Phototransistor cut-off wavelength 2.5-micron for M1-A2.


Gain Calculations

Custom-designed MBE-grown 2 µm Detector Technology

❖ Gain variation of an AlGaAsSb/InGaAsSb MBE-grown HPT (M1-A2) with bias voltage and temperatures

$$g = \frac{R_T(\lambda, V, T)}{R_T(\lambda, 0, 20^{\circ} C)}$$

- OV 1.6V bias voltages with 10mV steps
- -20°C, 20°C, 60°C, and 100°C
 - selected temperatures
- 2.05- μm incident radiation

Detectivity (D*)

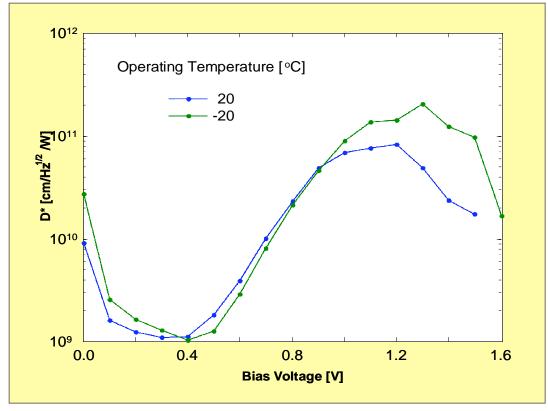
Existing and Custom-Designed LPE-grown 2 μ m Detector Technology Obtained from dark current and spectral response measurements assuming Johnson noise limited performance

$$i_n = \sqrt{\frac{4 \cdot K \cdot T}{R}}$$

$$D^* = \frac{\sqrt{A}}{i_n} \cdot \Re$$

- p-i-n detectors I & II (InGaAs (2.3, 2.6)) and p-n detector III (HgCdTe)
- With suitable bias voltage, InGaAsSb Phototransistor (PT) has the best detectivity, compared to InGaAs and HgCdTe technologies.

Detectivity (D*)


Custom-Designed MBE-grown Detector Technology

Obtained from dark current and spectral response measurements assuming Johnson noise limited performance

$$i_n = \sqrt{\frac{4 \cdot K \cdot T}{R}}$$

$$D^* = \frac{\sqrt{A}}{i_n} \cdot \Re$$

- OV 1.6V bias voltages with 10mV steps
- -20°C 20°C temperature
- 2.05-µm incident radiation

Performance Comparison of Existing Detector to the 2 μm Custom-Designed Detector

Detector	Diameter	Responsivity	Quantum Efficiency	Noise Current Density (I)	Noise Equivalent Power (NEP)	Detectivity (D*)
Unit	$\mu_{\mathbf{m}}$	A/W	%	A/√Hz	W/ [√] Hz	cm.√Hz/W
InGaAs (Off the Shelf)	1000	1.0004	62.1	7.3x10 ¹³	7.3x10 ¹³	1.2145x10 ¹¹
InGaAs (Off the Shelf)	1000	1.1134	70.4	3.5x10 ¹²	3.1x10 ¹²	2.8192x10 ¹⁰
HgCdTe (Off the Shelf)	1000	0.8761	54.4	1.9x10 ¹²	2.2x10 ¹²	4.0862x10 ¹⁰
InGaAsSb (Off the Shelf)	200	1.018	63.2	6.2x10 ¹²	6.1x10 ¹²	2.9104x10°
InGaSb/GaSb (Custom- designed)	800	0.9374	58.2	7.8x10 ¹²	8.3x10 ¹²	8.5201x10 ⁹
InGaSb (Custom- designed)	200	0.5637	35.0	6.4x10 ¹³	7.6x10 ¹³	2.3418x10 ¹⁰
InGaAsSb (Custom- designed)	200 (LPE)	2646 @253K & -4.4V	58.0	12.2x10 ¹¹	4.6x 10 ¹⁴	3.9x10 ¹¹
	300 (MBE)	1128 @253K & -1.3V	~50	14.28x 10 ⁻¹¹	12.66x 10 ⁻¹⁴	2.1x10 ¹¹

Conclusions

- Developed custom-designed photoransistors at AstroPower and University of Delaware under NASA contracts.
- Characterized them at NASA LaRC to measure the responsivity and dark current. Device performances have been demonstrated in the laboratory to determine responsivity, detectivity and noise equivalent power
- ➤ Results show high responsivity of 1128 A/W corresponding to an internal gain of 2000, high detectivity (D*) of 2.1x10¹¹cmHz^{1/2}/W that is lower than the LPE-grown phototransistor of 3.9x10¹¹cmHz^{1/2}/W for the same

wavelength and temperature.

- These phototransistors have great potential for lidar remote sensing applications and this technology will improve the capabilities to measure atmospheric pollutants for future Earth Science measurements.
- This technology has rate of the police of the strong to the second of the second of

Acknowledgement

This work is supported by Laser Risk Reduction Program under NASA's Earth Science Technology Office and NASA's Enabling Concepts & Technologies Program.

The authors acknowledge George Komar and Chris Moore for their support.

Many thanks to Mr. Krishna Swaminathan from University of Delaware for Fabricating the MBE-grown phototransistors.